Salty John : The Blog

When the wind pipes up and the going gets tough heaving-to is a great tactic that lets you stop the world and get off for a while. Or, as Bernard Moitessier says in his classic The Long Way: “….when you no longer know what to do: come about without touching the sheets, put the helm alee, stretch out in the cockpit, eyes closed, and then see things as they are….”.

You can heave-to to have lunch or to weather a storm or, of course, to lie in the cockpit and contemplate. How you do it depends to a large extent on your boat and you should practice the manoeuvre so that you can do it when you need to. For most it’s a matter of tightening up to close hauled and then tacking without releasing the jib sheet. Once the jib is aback, let out the main a little and lash the helm alee. Each boat will behave somewhat differently but the principle of setting the helm and main to drive the boat against the backed jib remains – it’s a matter of finding the right balance for your boat and the prevailing conditions.

In storm conditions you’d be down to storm jib and fully reefed main or trysail but you can heave-to with a fuller sail plan if you just want to stop for lunch or to carry out some task which is best done with the boat still.

Hove-to, the boat should lie about 40º or 50º off the wind and forereach slowly. You are underway so need to act accordingly regarding collision avoidance.

A good skill to acquire is heaving-to.

I wish you all a happy, peaceful and prosperous 2018.

Here’s a pleasant little film of a solo sail to the Faroes….

The snubber is a length of nylon or polyester three-strand line that takes the anchor load from the chain to a deck cleat or Samson post, absorbing the shocks and leaving the chain hanging in a loose bight, resting lightly and relatively noiselessly in the bow roller.

The snubber is attached to the chain by a chain hook of some sort – there are a range of proprietary variations available – or a rolling hitch. After a few months, we dispensed with our clunky chain hook in favour of the rolling hitch – we found this more positive than the chain hook and more deck and toe friendly. The rolling hitch is particularly suited to this purpose, it doesn’t tighten under load and so won’t jam and become difficult to undo.

The snubber for a 35 to 40-foot cruising boat would be typically 12mm diameter and at least 12m long. If you choose a line that’s too heavy you won’t get enough of the beneficial stretch into the system, which is why old halyards and sheets aren’t really suitable for this purpose, they tend to be low stretch. The snubber is attached to the chain and a strong point on deck and then the chain is run out until the snubber comes up taught, then a few more feet to give a nice healthy loop of chain and you’re set. If the snubber chafes through the chain retakes the load.

A snubber is also useful in anchorages where the swell comes from a different direction to the wind, curving around a headland, perhaps. The boat, lying to the wind, may take the swell on the beam and roll uncomfortably. In this case, lead the snubber line all the way aft to a cleat or sheet-winch on the side away from the swell. Then, as you let out more anchor chain, the boat will turn her head toward the swell as the anchor lead point moves aft. This bridle arrangement can mean a good night’s sleep in an otherwise impossibly rolly anchorage.

An essential thing is the snubber.

Fascinating look at the Observer Singlehanded Transatlantic Race:

When the sun has melted into the horizon like a knob of butter on a hotplate you flick on the navigation lights and prepare for a night at sea.

Night sailing is at times magical, at other times intimidating. Deep water with plenty of sea room, no traffic, a gentle breeze and a big moon are the ingredients for a pleasant night passage.

We enjoyed just such an untroubled passage between Dominican Republic and Puerto Rico on our sloop Adriana. It had been hot and windless during the day but as night fell the breeze came back and the lights of Mayaguez twinkled on the horizon. I set the jib, slacked the mainsheet and cut the engine. Adriana leaned her shoulder into the sea and came alive. The sky grew into deeper shades of night, beset with a million jewels, as we cut a swathe through the boisterous sea.

Other night passages have been less idyllic: Battling to windward along the north coast of Hispaniola under a grim moonless sky, hugging the rocky coastline to stay within the umbra provided by the land, lightning blooming on the horizon – this wasn’t the most relaxing of night watches.

Dawn creeps up with the promise of delight or of dire warning – radiant sunburst or red tinged clouds. Another day at sea begins. What will it bring?

Forestay tension is achieved by tensioning the backstay. On most boats the amount of backstay tension you need to apply is less than the resultant forestay tension because the forestay makes a more acute angle with the mast than does the backstay.

However, on many catamarans the backstay makes a more acute angle than the forestay, as can be seen on this Prout sail plan. This means that for every kilogram of tension needed in the forestay you have to crank on more backstay tension. So, be careful.

A Loos tension gauge is a handy tool for setting up standing rigging.

To survive in the marine environment your VHF antenna needs to be strongly built of appropriate materials – look for stainless steel components, including both the body and the whip. How the antenna is built internally isn’t so obvious – you’ll need to rely on reputation and a good warranty.

A marine VHF whip antenna depends for its performance on proper design and build-quality. That tin-can at the bottom of the antenna contains the DC shunted coil that must be precisely tuned to the proper resonance. Getting this bit of the design and build right is the difference between an antenna that performs well and one that doesn’t.

The US built Metz antenna is based on a heavy gauge stainless steel shell which encloses the coil wound around a substantial form. The coil assembly is sealed in a solid epoxy compound. This build method allows prolonged transmission without danger of coil distortion as the antenna heats up. It carries a life-time warranty.

The Metz antenna is used by professionals such as UK Search and Rescue organisations, professional fishermen, tour boats and the Clipper Round the World fleet.

Lower quality antennas have fibreglass or mild steel bodies (see picture) enclosing light gauge coils and inadequate forms all sealed in a waxy substance. This flimsy internal construction leads to distortion of the coil as the antenna heats up when transmitting, which changes the antenna characteristics, leading to poor performance.

You don’t need to pay through the nose for top quality construction: the Metz Manta, at £59.95 including UK postage, is no more expensive than ordinary antennas and lower in price than some other stainless bodied antennas. Check it out at the Salty John on-line shop.

If you think anchor selection is a controversial subject you should try talking about propellers. I don’t know why these subjects should cause such angst, but they do. So I’ll just dive right in.

The first issue is drag: Under sail with the engine stopped does a fixed propeller create more drag when it’s locked or when it’s allowed to freewheel? You would think the answer would be unequivocal – and it shouldn’t need rocket scientists to work it out. But just to be sure, some rocket scientists, or their marine equivalents, did work it out and their answer is unequivocal: There is less drag when the propeller is allowed to rotate.
Scientists at MIT and at Strathclyde University agree on this. It is fact.

So, we know we get less drag with the propeller rotating but what are the other arguments for and against allowing the prop to turn?

Noise: The rumble from a rotating propeller can be quite intrusive, particularly if you’re off watch in a stern berth. Some people can’t stand the noise whilst others find it interesting; they like to judge the speed of the boat by the level of noise.

Energy recovery: If you want to run a generator off the shaft it has to turn – simple.
Wear: Where there’s motion there’s wear and tear, if not damage, to drive train bearings and seals.

Gearbox damage: Clearly you shouldn’t be risking damage to your gearbox or losing your warranty protection just to get a half a knot of boat speed under sail or to get a good night’s sleep in the quarter berth.

It seems that Yanmar became so concerned at the number of requests they received for clarification on the best practice for their engine/gearbox combinations that they issued a directive: The gearbox must be in neutral when sailing or your warranty will be invalidated. If you want to stop the shaft use a shaft brake, they say, not our gearbox.

I have to admit I sailed for many thousands of miles with my Yanmar 3GM30F in reverse gear to stop the shaft rotating and I never had a moment’s trouble. Just lucky?

If you have a Hurth/ZF gearbox you must not select forward gear when sailing forwards. Or reverse when sailing backwards, obviously. Apart from that, use the gearbox in reverse to lock the shaft or let it run free, it’s up to you.

With a Borg Warner Velvet Drive transmission you can do what you like, it will rotate anyway.

On some gearboxes damage can occur because the engine needs to be running to provide lubrication, with splash lubrication there isn’t usually a problem, so check the manual.

It boils down to this: If you are obsessed with squeezing out the last fraction of a knot under sail you need to let the prop freewheel. You’ll be happy to accept any wear and tear on your cutlass bearing and you’ll issue ear plugs to those that find the noise is keeping them awake.

If you’re worried about wear or can’t stand the noise you’ll want the shaft stopped and whether you do that by using the gearbox or a shaft brake will depend on your gearbox manufacturer’s advice, and whether or not you’re going to obey it.
Simple, really.